4,160 research outputs found

    Implementation in Advised Strategies: Welfare Guarantees from Posted-Price Mechanisms When Demand Queries Are NP-Hard

    Get PDF
    State-of-the-art posted-price mechanisms for submodular bidders with mm items achieve approximation guarantees of O((loglogm)3)O((\log \log m)^3) [Assadi and Singla, 2019]. Their truthfulness, however, requires bidders to compute an NP-hard demand-query. Some computational complexity of this form is unavoidable, as it is NP-hard for truthful mechanisms to guarantee even an m1/2εm^{1/2-\varepsilon}-approximation for any ε>0\varepsilon > 0 [Dobzinski and Vondr\'ak, 2016]. Together, these establish a stark distinction between computationally-efficient and communication-efficient truthful mechanisms. We show that this distinction disappears with a mild relaxation of truthfulness, which we term implementation in advised strategies, and that has been previously studied in relation to "Implementation in Undominated Strategies" [Babaioff et al, 2009]. Specifically, advice maps a tentative strategy either to that same strategy itself, or one that dominates it. We say that a player follows advice as long as they never play actions which are dominated by advice. A poly-time mechanism guarantees an α\alpha-approximation in implementation in advised strategies if there exists poly-time advice for each player such that an α\alpha-approximation is achieved whenever all players follow advice. Using an appropriate bicriterion notion of approximate demand queries (which can be computed in poly-time), we establish that (a slight modification of) the [Assadi and Singla, 2019] mechanism achieves the same O((loglogm)3)O((\log \log m)^3)-approximation in implementation in advised strategies

    On the Role of Charmed Meson Loops in Charmonium Decays

    Full text link
    We investigate the effect of intermediate charmed meson loops on the M1 radiative decays J/ψηcγJ/\psi \to \eta_c \gamma and ψηc()γ\psi'\rightarrow\eta^{(\prime)}_c\gamma as well as the isospin violating hadronic decays ψJ/ψπ0(η)\psi'\rightarrow J/\psi \,\pi^0(\eta) using heavy hadron chiral perturbation theory (HHχ\chiPT). The calculations include tree level as well as one loop diagrams and are compared to the latest data from CLEO and BES-III. Our fit constrains the couplings of 1S and 2S charmonium multiplets to charmed mesons, denoted g2g_2 and g2g_2^\prime, respectively. We find that there are two sets of solutions for g2g_2 and g2g_2^\prime. One set, which agrees with previous values of the product g2g2g_2 g_2^\prime extracted from analyses that consider only loop contributions to ψJ/ψπ0(η)\psi'\rightarrow J/\psi \,\pi^0(\eta), can only fit data on radiative decays with fine-tuned cancellations between tree level diagrams and loops in that process. The other solution for g2g_2 and g2g_2^\prime leads to couplings that are smaller by a factor of 2.3. In this case tree level and loop contributions are of comparable size and the numerical values of the tree level contributions to radiative decays are consistent with estimates based on the quark model as well as non-relativistic QCD (NRQCD). This result shows that tree level HHχ\chiPT couplings are as important as the one loop graphs with charmed mesons in these charmonium decays. The couplings g2g_2 and g2g_2^\prime are also important for the calculations of the decays of charmed meson bound states, such as the X(3872), to conventional charmonia.Comment: 16 pages, 3 figures, minor modifications, more references adde

    A Classification and Analysis of Higgs-flavor Models

    Full text link
    A classification is given of Higgs-flavor models. In these models, there are several Higgs doublets in an irreducible multiplet R_{Phi} of a non-abelian symmetry G_{Phi}, under which the quarks and leptons do not transform (thus giving minimal flavor-changing for the fermions). It is found that different G_{Phi} and R_{Phi} lead to very distinctive spectra of the extra Higgs doublets, including different numbers of "sequential Higgs" and of "inert Higgs" that could play the role of dark matter, different mass relations, and different patterns of SU(2)_L-breaking splittings within the Higgs doublets.Comment: 35 page

    Emergence of supersymmetry on the surface of three dimensional topological insulators

    Full text link
    We propose two possible experimental realizations of a 2+1 dimensional spacetime supersymmetry at a quantum critical point on the surface of three dimensional topological insulators. The quantum critical point between the semi-metallic state with one Dirac fermion and the s-wave superconducting state on the surface is described by a supersymmetric conformal field theory within ϵ\epsilon-expansion. We predict the exact voltage dependence of the differential conductance at the supersymmetric critical point.Comment: 8 pages, 2 figures; published versio

    Regularization, Renormalization and Range: The Nucleon-Nucleon Interaction from Effective Field Theory

    Get PDF
    Regularization and renormalization is discussed in the context of low-energy effective field theory treatments of two or more heavy particles (such as nucleons). It is desirable to regulate the contact interactions from the outset by treating them as having a finite range. The low energy physical observables should be insensitive to this range provided that the range is of a similar or greater scale than that of the interaction. Alternative schemes, such as dimensional regularization, lead to paradoxical conclusions such as the impossibility of repulsive interactions for truly low energy effective theories where all of the exchange particles are integrated out. This difficulty arises because a nonrelativistic field theory with repulsive contact interactions is trivial in the sense that the SS matrix is unity and the renormalized coupling constant zero. Possible consequences of low energy attraction are also discussed. It is argued that in the case of large or small scattering lengths, the region of validity of effective field theory expansion is much larger if the contact interactions are given a finite range from the beginning.Comment: 7 page

    General Properties of the Gravitational Wave Spectrum from Phase Transitions

    Full text link
    In this paper we discuss some general aspects of the gravitational wave background arising from post-inflationary short-lasting cosmological events such as phase transitions. We concentrate on the physics which determines the shape and the peak frequency of the gravitational wave spectrum. We then apply our general findings to the case of bubble collisions during a first order phase transition and compare different results in the recent literature.Comment: 11 pages, 8 figures; v2: minor clarifications, published versio

    Lorentz transformations that entangle spins and entangle momenta

    Get PDF
    Simple examples are presented of Lorentz transformations that entangle the spins and momenta of two particles with positive mass and spin 1/2. They apply to indistinguishable particles, produce maximal entanglement from finite Lorentz transformations of states for finite momenta, and describe entanglement of spins produced together with entanglement of momenta. From the entanglements considered, no sum of entanglements is found to be unchanged.Comment: 5 Pages, 2 Figures, One new paragraph and reference adde

    Fluctuations in the Cosmic Microwave Background I: Form Factors and their Calculation in Synchronous Gauge

    Get PDF
    It is shown that the fluctuation in the temperature of the cosmic microwave background in any direction may be evaluated as an integral involving scalar and dipole form factors, which incorporate all relevant information about acoustic oscillations before the time of last scattering. A companion paper gives asymptotic expressions for the multipole coefficient CC_\ell in terms of these form factors. Explicit expressions are given here for the form factors in a simplified hydrodynamic model for the evolution of perturbations.Comment: 35 pages, no figures. Improved treatment of damping, including both Landau and Silk damping; inclusion of late-time effects; several references added; minor changes and corrections made. Accepted for publication in Phys. Rev. D1

    Decentralized Reinforcement Learning: Global Decision-Making via Local Economic Transactions

    Full text link
    This paper seeks to establish a framework for directing a society of simple, specialized, self-interested agents to solve what traditionally are posed as monolithic single-agent sequential decision problems. What makes it challenging to use a decentralized approach to collectively optimize a central objective is the difficulty in characterizing the equilibrium strategy profile of non-cooperative games. To overcome this challenge, we design a mechanism for defining the learning environment of each agent for which we know that the optimal solution for the global objective coincides with a Nash equilibrium strategy profile of the agents optimizing their own local objectives. The society functions as an economy of agents that learn the credit assignment process itself by buying and selling to each other the right to operate on the environment state. We derive a class of decentralized reinforcement learning algorithms that are broadly applicable not only to standard reinforcement learning but also for selecting options in semi-MDPs and dynamically composing computation graphs. Lastly, we demonstrate the potential advantages of a society's inherent modular structure for more efficient transfer learning.Comment: 18 pages, 13 figures, accepted to the International Conference on Machine Learning (ICML) 202
    corecore